Bayesian nonparametric regression and density estimation using integrated nested Laplace approximations.
نویسنده
چکیده
Integrated nested Laplace approximations (INLA) are a recently proposed approximate Bayesian approach to fit structured additive regression models with latent Gaussian field. INLA method, as an alternative to Markov chain Monte Carlo techniques, provides accurate approximations to estimate posterior marginals and avoid time-consuming sampling. We show here that two classical nonparametric smoothing problems, nonparametric regression and density estimation, can be achieved using INLA. Simulated examples and R functions are demonstrated to illustrate the use of the methods. Some discussions on potential applications of INLA are made in the paper.
منابع مشابه
Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothing-spline models, state-space models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox-processes, and geostatistical models. In this paper we consider app...
متن کاملApproximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...
متن کاملIntegrated Nested Laplace Approximation for Bayesian Nonparametric Phylodynamics
The goal of phylodynamics, an area on the intersection of phylogenetics and population genetics, is to reconstruct population size dynamics from genetic data. Recently, a series of nonparametric Bayesian methods have been proposed for such demographic reconstructions. These methods rely on prior specifications based on Gaussian processes and proceed by approximating the posterior distribution o...
متن کاملDiscussion on “ Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
integrated nested Laplace approximations” by H. Rue, S. Martino, and N. Chopin, Christian P. Robert, CEREMADE, Université Paris Dauphine and CREST, INSEE Rue, Martino and Chopin are to be congratulated on their impressive and wide-ranging attempt at overcoming the difficulties in handling latent Gaussian structures. In time series as well as spatial problems, the explosion in the dimension of t...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations
We are concerned with Bayesian inference for latent Gaussian models, that is models involving a Gaussian latent field (in a broad sense), controlled by few parameters. This is perhaps the class of models most commonly encountered in applications: the latent Gaussian field can represent, for instance, a mix of smoothing splines or smooth curves, temporal and spatial processes. Hence, popular smo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biometrics & biostatistics
دوره 4 شماره
صفحات -
تاریخ انتشار 2013